

COURSE OFFERED IN THE DOCTORAL SCHOOL

Code of the course	4606-ES-00000CJ-C026	Name of the course	Polish English	Podstawy rozpoznawania obrazów Fundamentals of Computer Vision			
Type of the course	specjalnościowe/specialized courses						
Course coordinator	dr hab. inż. Agnieszka Jastrzębska, prof. uczelni (Wydział MINI PW)	Course teacher	dr hab. inż. Agnieszka Jastrzębska, prof. uczelni (Wydział MINI PW)				
Implementing unit	Center for Advanced Studies WUT	Scientific discipline / disciplines*	information and communication technology, mathematics				
Level of education	doctoral studies	Semester	spring 2026				
Language of the course	English						
Type of assessment	ZAL	Number of hours in a semester	30	ECTS credits	3		
Minimum number of participants	10	Maximum number of participants	49	Available for students (BSc, MSc)	Yes/No		
Type of classes	Lecture	Auditory classes	Project classes	Laboratory	Seminar		
Number of hours	in a week	2		2			
	in a semester	22		8			

* does not apply to the Researcher's Workshop

1. Prerequisites

Knowledge in mathematics in the areas consistent with engineering studies curricula: fundamentals of algebra, calculus, discrete mathematics, probability, and statistics.

Programming skills - Python.

2. Course objectives

The aim of the course is to familiarise students with the basic concepts and methods of image recognition: pre-processing of data and development of image recognition algorithms. The course aims to build the theoretical knowledge of the students and practical skills at the same time. Hence, we put emphasis on the methodology of software development with elements of machine learning and specific tasks arising in image analysis.

3. Course content (separate for each type of classes)

Lecture

Image preprocessing – 2h.

Basics of data classification (simple classifiers, feature extraction, training process, quality analysis) – 5h.

Image classifiers relying on expert-designed features – 3h.

Image recognition with convolutional neural networks – 6h.

Explainable classification – 2h.

Software engineering for systems with machine learning (with a specific attention put to image annotation, sample size, result evaluation) – 4h.

Laboratory

The students will be working on one project assignment. The task will consist in the development of a program that will process image input (that includes, for example, video). Details of the task will be presented and discussed in the first half of the semester. An integral part of the work will be the preparation of a report documenting the process of developing the solution, the methods used, and the results achieved.

4. Learning outcomes

Type of learning outcomes	Learning outcomes description	Reference to the learning outcomes of the WUT DS	Learning outcomes verification methods*
Knowledge			
W01	Has a well-grounded knowledge of the basic concepts of data classification.	SD_W2 SD_W3	project evaluation, active participation during classes
W02	Has a well-grounded knowledge of image recognition methods.	SD_W2 SD_W3	project evaluation, active participation during classes
W03	Has a basic knowledge of software development engineering concepts concerning systems with machine learning modules.	SD_W2 SD_W3 SD_W5	project evaluation
Skills			
U01	Is able to construct image recognition algorithms.	SD_U1 SD_U3	project evaluation, report evaluation
U02	Is able to design image processing pipelines.	SD_U1	project evaluation, report evaluation
U03	Is able to perform structured experiments to assess the quality of image recognition programs.	SD_U2 SD_U3 SD_U7	project evaluation, report evaluation
Social competences			
SC01	Understands the need for further self-education.	SD_K1 SD_K2	active participation during classes

*Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5. Assessment criteria

As part of the laboratory classes, each student completes one individual project assignment. The details of this task will be outlined during the first half of the semester. The evaluation will take into account the source code prepared (quality of the code) and a report which will discuss the methods used, the results achieved, and the process of obtaining these results. Attendance – 2 absences allowed.

6. Literature

Primary references:

- [1] Davies E. R. Computer Vision: Principles, Algorithms, Applications, Learning. Academic Press, 2017.
- [2] Klette R. Concise Computer Vision: An Introduction into Theory and Algorithms. Springer, 2014.
- [3] Szeliski R. Computer Vision: Algorithms and Applications. The University of Washington, 2022.

Secondary references:

- [1] Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006.
- [2] Duda R., Hart P. Pattern classification, Wiley, 2000.

7. PhD student's workload necessary to achieve the learning outcomes**

No.	Description	Number of hours
1	Hours of scheduled instruction given by the academic teacher in the classroom	30
2	Hours of consultations with the academic teacher, exams, tests, etc.	10
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	20

4	Amount of time devoted to the preparation for exams, test, assessments	15
	Total number of hours	75
	ECTS credits	3

** 1 ECTS = 25-30 hours of the PhD students work (2 ECTS = 60 hours; 4 ECTS = 110 hours, etc.)

8. Additional information

Number of ECTS credits for classes requiring direct participation of academic teachers	2
Number of ECTS credits earned by a student in a practical course	1